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l. INTRODUCTION

Let B be a compact metric space and 4 a non empty subset of C(B), C(B)
the space of continuous real functions on B normed by

i, = max | £(x)).

Then, given f& C(B), the Chebyshev approximation problem is to find a best
approximation a’ € A4, satisfying for every a € A.

If=dll.<ilf—all, .

If this inequality holds for all a € 4 MU, U< C(B) some neighborhood of
@', a’ is called a locally best approximation. It is well-known that, given A,
the mapping

C(B) — 1"

T em =t - al,

is continuous |5]. Much more problematic is the dependence of a best
approximation @’ on f. Let M(f)< A be the (possibly empty) set of best
approximations to f. Then one can define the mapping

296

0021-9045/81/120296-12%02.00/0

Copyright € 1981 by Academic Press, Inc.
All rights of reproduction in any form reserved.



CONTINUITY OF CHEBYSHEV OPERATOR 297

C(B) — 7#(A)
S MY
where .#°(4) is the set of subsets of 4. In this general form the problem is

treated in [2].
More usual is to consider instead of M the so-called T-operator:

M:

DEerINITION 1. Let D, < C(B) be the set of f for which there is exactly
one best approximation @’ € 4. The T-operator is the mapping

D, > A

T: F oo

An important property in investigating 7 is strong unicity:

DEFINITION 2. a’ €A is a strongly unique best approximation to f if
there is a y > 0 such that for every a € 4

la=Al.>la"=fl,+7lla —all, .

If every f& C(B) has a strongly unique best approximation, then 7" is said to
have the strong unicity property.

The following theorems hold |5].

THEOREM | (Freud, cf. |4]). If T has the strong unicity property, then,
Jor every fE€C(B). there is a A=A(f)>0 such that
| Tf—Tgll. <Al f—gll, for every g € C(B). Especially, T is continuous on
D, = C(B).

THEOREM 2 [15]. Suppose that B contains at least n+ 1 points. Let
A < C(B) be a linear Haar-subspace of dimension n. Then T has the strong
unicity property.

The following theorem is important in considering continuity at a given f.

THEOREM 3. Let a’ be a strongly unique best approximation to f. If there
is an ¢>0 such that ta €A ||a—d'|l, <&} is compact, then there is a
neighborhood U, of f and a constant A > 0 such that for every g € U, there
exists a best approximation a® and ||a’ — a*||,. <Al /—gll, .

In order to compute a best approximation numerically, usually a
parametrization
P> A

, pc i
p—a(p. )



298 HETTICH AND JONGEN

is assumed to be given and p’ € P is to be determined such that a( p'. -) = «'.
Then from a numerical point of view it is an important question whether the
appropriately defined function f—p’ is continuous. Let d(a(p. -)) be the
dimension of the tangent-space S(a) at a(p,-) with respect to the
parametrization. Then, if S(a) is a Haar-space and. for all @’ € 4. a’ — a has
at most d(a(p.-))— 1 zeros in B, the normality of f—i.e.. d(a(p’. )=
max, ., 6(a(p, -))—is sufficient for the assumptions of Theorem 3 to hold
[1,5]. This result can be applied for instance to rational an exponential
approximation.

Haar's condition is very restrictive and actually does not hold for
nontrivial B < i+™. m > 1. Therefore. in this paper. we will proceed in a
different way. In Section 2 we show that strong unicity is closely related to a
sufficient optimality condition of first order to hold. This implies that in
nonlinear approximation strong unicity is very restrictive. Therefore, instead
of a first order condition, in Section 3 we assume a second order sufficient
condition for p/ to be optimal and show that an appropriately defined T°
operator is locally continuous. We remark that differentiability of the
functions under consideration is required for our investigations.

Concerning the numerical relevance of our results, we note that the
assumptions required to ensure continuity imply convergence of a Newton-
method generalizing the second algorithm of Remes |9]. Thus, the same
assumptions imply convergence and numerical stability as well. This
generalizes a similar result for strong unicity and the method of linearization
|6 ]. Note that our assumptions are considerably weaker than that of strong
unicity. Naturally, as less as normality and strong unicity, our assumptions
in general cannot be verified a priori for a given problem.

2. LocAL THEORY OF FIRST ORDER IN PARAMETER SPACE

In the following we assume that 4 is parametrized

P A

\ P < 1:" open,
p-a(p, )

and that f€ C(B) and p € P are fixed.

DEFINITION 3. An element p € P is called a locally best approximation
to f if there is a neighborhood U < P of j such that for every pe U

la(p, ) —fll. <lha(ps )=l
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If, for some U, equality implies p =p, p is called locally unique. If there are
U and y > 0 such that for every pe U

la(p. <) =Sl >llalp. ) =11

(| | the Euclidean norm on "), g is called locally strongly unique.

wtyiP—pl (2.1)

Let M, : C(B)—.7(P), be the mapping for which the image of f'is the set
of locally best approximations to f.

DEFINITION 4. Let 5 be a locally unique best approximation to /. If there
are neighborhoods Uz, Uj; of /. p such that for every f€ U; the set
M, (f)" U contains exactly one element p’, then the local T-operator 1 is
defined by

b= U,
g4
Remark. If there are U,c®R" and U,;.,<C(B) such that
a: U; > AN U,;. ., is bijective and if there are @ > 0, > 0 such that
afja(p, ) —a(p, N, <Ip—=pI<Blalp. ) —a(p. ..,

then a( p) is locally strongly unique if and only if 5 is and ¢ is continuous in /
if and only if 7 is.

Since the case f€ 4 is not very exciting, from now on we assume f@ A.
Furthermore we assume that a(p, x) has a continuous derivative D, a(p. x)
with respect to p. Let

E=|x€BI|f(x)~a(px) = —a(p, )1 (2.2)

Lemma 1 (cf. |8]). Ler &(x)=sign(f(x)—a(p.x)). If the system of

linear inequalities
6x)Dya(p.x)E20.  x€EE, (2.3)

has no solution &+ 0, then p is a locally unique best approximation.

We show that the condition of Lemma 1 is even equivalent to p being
locally strongly unique.

THEOREM 4. Inequality (2.3) has no solution £ #0 if and only if p is a
locally strongly unique best approximation.

Proof. First, assume that &,, {&|=1, solves (2.3). For 7 sufficiently
small, p(r) =p + &, € P. If p is locally strongly unique, then for an arbitrary
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sequence {1,}, 7, > 0, lim,  7,=0, for every / sufficiently large there exists
an x; € B such that

!f(xi)va(p(fi)’ i ‘ Hf a(p»

Since B is compact we may assume that the sequence {x;| converges.
lim,, . x;=x* It is simply proved by contradiction that x* € E. Since
f& A, we have a(x*)+#0. It is sufficient to consider the case d(x*)= 1.
Then, there is an i, such that flx,)— a(p(r;).x;) > 0. i > i,. Therefore, for

such i

o + VT,--

0 <f(x)—alp+1,&.x)
= flx;) —a(p, x;) — 1;Dya(p, x) ¢, + o (1))
< f=a(ps o —1Dya(px;) & + o (7).
Thus, for all i > i,
vt < 1 Dya(p, x;) §y + o (1)

This 1s seen to be a contradiction to y > 0 by observing that (2.3) implies
lim_, . D,a(p, x;) & = D,a(p,x*)& 2 0. Therefore, if (2.3) has a solution
other than 0, then j is not locally strongly unique.

On the other hand, assume p is not locally strongly unique. Then there is a
sequence p', lim,, p'=p, p'=p+1,&EEP, |& =1, 1,>0, such that
I f—a(p', M. =f—a(B, ), + o). We may assume, that the sequence
(&} converges: lim, ., & = &y, €| = 1.

Let x € E. o(x) > 0.Then f(x) —a(p', x) <f(x) — a(p, x) + o(r;) which,
by f(x) — a(p',x) = f(x) — a(p, x) — 1,D,a(p, x) ¢ + o(z;), shows that
D,a(p,x)&, = o(x)D,a(p,x)>0. The case a(x) <0 is analogous.
Consequently &; solves (2.3).

3. SOME AUXILIARY RESULTS

To derive a local theory of second oder some properties of the function
spaces on B are required which are given only for special regions B.

DEFINITION 5. A nonempty compact subset B < H"’ is called a Regular
Approximation Region (RAR) if there are functions #' € C*(R™), i = 1...., ¢,
such that

(i) B=|{x|h'(x)<0,i=1,.,¢},
(ii) for every x € B the gradients Dh'(x), i € L(x) = {i | h'(x) = 0}, are
linearly independent.
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In the sequel B is assumed to be a RAR with a set of A', i=1,..¢,
according to Definition 5, chosen once for all. Note that (ii) implies that the
interior B, of B is nonempty and that B =clos(B,). Excluded by the
definition are for instance L-shaped regions or regions with cusps.

By C?(B) we denote the vector space of real-valued functions, twice
continuously differentiable in B,, continuous on B, and such that all partial
derivatives up to the second order can be extended to functions in C(B).
These extensions then are unique and with the norm

1/l = max | /*(x)l

XER

where k = (k,,... k,)) € (NU{OD™, |k| =3  k,, and

51k

S0 =g ()

it is obvious that C*(B) is a Banach space.
A proof of the following lemma, based on Whitney’s Extension Theorem
(cf. |14] for instance), is given in [11].

LEMMA 2. Let B be a RAR. Then. for every f€ C*(B), there exists an
extension [ € C*(IR™).

Let B and B be RAR’s such that Bc B,. The restriction map
#:CYB)- C*(B), %’fzf,m,,,, clearly is continuous and consequently
.# “Y(@), @ € C*(B) the null-function, is a closed linear subspace of C?(B).

Let C*(B|B)= C*(B)/.#'(O@) be the quotient space with norm

L= inf[ /5. LECHEIB)

It is well-known (cf. |3]) that C*(B| B) with this norm is a Banach-space.
Moreover, the canonical projection .#*: C*(B) - C*(B| B) is easily seen to be
continuous and open, such that the topology given by || ||| is the quotient
topology with respect to . 7°.

This implies (cf. [12, p. 94ff.|) that a map ¢: C*(B|B)— X, X a
topological space, is continuous if and only if ¢ o.7: C}(B)— X is con-
tinuous.

Finally the mapping .#,,,: C*(B| B) » C*(B) induced by .# is a linear.
bijective and continuous map from one real Banach space to another and
therefore, by the open mapping theorem, %, , is a linear homeomorphism.

Altogether, the following lemma is proved.
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LEmMMma 3. Let B, B be RAR’s such that B < B,,, X a topological space.
and @: C*(B) - X a continuous mapping with the property that ®(f)= @(g)
iff—g€.# '(O) (ie., ® depends only on elements from C*(B | B)). Then @
induces a unique continuous mapping @,.,: C*(B)—~ X such that the
Sfollowing diagram is commutative:

c¥B) 2 X
f& ‘ Dind
{
CB|B)—> C'(B)
Find

Let B be a RAR. For |k| < 2 we define the mappings
T:CHB)X By~ R by T (fix)=f"x)
We remark that C*(B)X B, is an open subset of the Banach space
C*(B) x R™ with norm [[|(£, )|l = [/ [l + |x].
LEmMMA 4. T, is continuous for |k|<2 and continuously Fréchet-
differentiable for k| < 1.

Proof. A trivial calculation gives

I T (s x) = T (g ) <l f—glly + 1 ) =)l

Together with the continuity of f* this implies the continuity of 7, for each
k, k| <2.

We prove continuous differentiability of 7, only, the proof for k, k| = L,
being analogous. Let (f, x) € C*(B) X B, be fixed and y € R™ be such that
X +y € B,. Then

Tof+g x4+ —Tfix)=DAAx)y + Dg(x)y + gx) + «( ¥
=Df (x)y + g(x) + «(l(& ) (3.1)
The mapping
C*(B) X W™ — |

DTy (f, x):
U (g.3) > D)y + g(x)

is linear and continuous since 7 is continuous. Therefore, (3.1) shows that
DTy(f. x) is the Frechet-derivative of T, at (f, x).
It remains to show that the mapping

DT,: C*(B) X By~ |C*(B) X h"|*
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is continuous (* denotes the topological dual space). Let ||| -]|* be the norm
on [C*(B)x R™]* induced by || - ||l. Then
IDTy(f. x) = DTy (£ DI* = LoSup (DTy(fex) = DT(L 2))(g.p)
gy S
< sup P07~ D)+ gx) - g (3.2)
£,y <

Since B, is open, it is no restriction of generality to assume that the segment
[x. %] is in B,. Then there exists @ € (0, 1) such that

| g(x) — g(¥)| = | Dg(x + O(x — ¥))(x — ¥)|

) i i (3.3)
<[ Dg(x + O(x — X)) |x — X|.

Observing that [||( g, »)|} < 1 implies | | < 1, (3.2) and (3.3) together with the

continuity of T,, |k| = 1, imply the continuity of DT, at (/. x).

4. LocAL THEORY OF SECOND ORDER

Consider again the approximation problem of Section 1 but now with B a
RAR. 4 = C*(B), and f€ C*(B). That means from now on, we restrict our
considerations to the approximation of twice continuously differentiable
functions. The set of approximating functions A is assumed to be locally
parametrized in the following sense:

Given a€ A there is a p& ", an open neighborhood P of p and a
function @ € C*(P X B) such that a(p, -)=a and a(p. -) € 4 for p € P. The
space C*(P X B) is defined analogously to C*(B) and Lemma 2 holds in the
sense that an & € C*(P X B) can be extended to an A€ C*(P X R™).

In the sequel @ € A4 is fixed and p, P, a(p, -) are given as above. As usual
[ /1, =max, ., | flx), /€ C(B). We recall that for f€ C*(B), a € C*(P X B)
the extensions of all partial derivatives to 6B = B~ B, and P X @B resp. are
uniquely determined.

Let the set £ of extremals of the error function

e(f. 5, x) =[(x) — a(p.x)
be given by (2.2). We need some nondegeneracy-assumptions which will be
formulated now.

Assumption (A). (Cardinality of E related to the dimension of the
parameter space P). There are exactly r, r<n+ 1, points in E. Let
E={x'.. x"}.
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Assumption (B). (Nondegeneracy of the extremal set with respect to B).
Suppose (A) holds. Let ;= signe(f, p, ¥). j= L....r. Then, for j= l...r,
there are uniquely defined numbers W > 0. i € L(¥). such that

&ije(/—;ﬁy X—J) = \_

iel (X

w'Dh'(x) (4.1)
)

and such that the quadratic form u’M u is negative definite on the subspace
T,={u€ " | Hu=0} (4.2)

where

H,= | Dhi(Z) ) (4.3)
: fel(xh

an m X |L(x)-matrix, and, with D® denoting the matrix of second
derivatives,

M;=¢Die(f.p.X)— N WD RI(F). (4.4)
iel(xh
Remark. The conditions of (B) imply that the & are locally strict
extrema of e(f, g, x) on B.
Assumptions (A) and (B) imply that the extremals of the error function
e( /. p, x) locally may be considered as continuous functions of fand p. More
precisely we have:

THEOREM 5. Assume that (B) holds. Then, for j=1,..r, there are
neighborhoods Uy C*(B), U; < P, Uy < B of f. p, ¥ resp., and continuous
functions  x': Uzx Uz — Ug, X'(f,p)=X'. such that for every pair
(fsp)E Uy xX Uz the points X(f,p)EB are the only local extrema of
e(f,p,x)in Uj_, Uy and such that

lle(fop. .. = max je(/.p, x/(f3 p))l.

Progf. Let B be a RAR such that B B,. Let /. a(p.-) € C*(B) be the
extensions of f and a(p, - ) according to Lemma 2. For arbitrary but fixed
J € {1.... r} consider the equations

G{Df) = D, a(p. X))t — N wiDhi(x)=0,
el (3 (4.5)
Rix')=0, i€ L(®).
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By Lemma 4 the left-hand sides of (4.5) depend continuously Fréchet-
differentiable on f; p, x/, wion C*(B) x P X By x R, From (B) we sce
thatf P, ¥/, w¥ solve (4.5). Moreover (cf. [7]), (B) implies that the Jacobian
in f, p, &, w¥ with respect to x/, w” is nonsingular.

Therefore the Implicit Function Theorem (cf. |13|) _may be applied and
yields the existence of neighborhoods UTC CY(B). U-cP U, cB and
contmuously Fréchet-differentiable functions & U X 4]—— U;/,

W U;X U — R, such that for every (fip)€E U7>< U the only solutlon of
(4 5)in Ux,x RIS is Z(fp) wi(fp), i = L. .L(x’)

We remark that U_cB is possible due to the equations A'(x')=0,
ie L(.x‘*j). From U, c B it follows that &/ only depends on the values off
a(p,-) in B. Therefore, Lemma 3 yields the existence of (7_7
(= Fipg o /’(U;)) (2— (7 Uy=UycB and continuous functions x’
(=X 4): U;X U——+ Ug such that x/(f, p) are the only candidates for extrema
of e(f. p, x) in U;,

The remainder of the proof is by standard arguments.

Remark. As a consequence of Theorem 2, if assumption (B) holds, the
problem locally can be reduced to a discrete one with discretization points
¥/(f. p) depending on f and p (cf. [10]).

Finally, to investigate the dependence of p and f we need:

Assumption (C) (Nondegeneracy in the parameter space). Assump-
tion (B) holds. Moreover, there are uniquely defined #’' >0. Y/ &/ =1
such that

N @G Da(p.¥)=0 (4.6)
i

and such that for every £ € K ~ {0},

K=1{|D,a(p.X)E=0.j=l..r} (4.7)
we have
¢ [\ #e;D}al(p. x)J \_zz' G, Ma; > 0. (4.8)
J—1 i=1
where 4, is uniquely determined from

-

J

with D3, = D, D], and H;, M, given by (4.3), (4.4).
Note that the unicity of &’ implies that every set of at most r — 1 of the
vectors D, a( p, &), j=1,.., r, is linearly independent.
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Remark. Assumption (C) is a sufficient condition for g to be a locally
unique best approximation (cf. |7]).
The following theorem is the main result of this paper:

THEOREM 6. Assume that (C) holds. Then there are neighborhoods
Upc CHB), Usc P, UycB, UgcR_, j=1l.r, Ugyc T, i€ LF),
J= 1.7, off,‘ﬁ, @, wY oresp. and continuous functions p: Uz Us,
x’: Up» Uy, wW:Up~ Uy and w?: Uz Uy with p(f)=p. \*’(f)-x‘.
(Y=, wi(fy=w" and such that for every f€ Ur p(f) is a locally
unique best approximation to f and Assumption (C) holds with x'(f), v'(f ).

w/(f).

Proof. The proof of Theorem 6 follows the same line as that of
Theorem 5. Instead of (4.5), now the following system is considered:

Glf ) —alp.x)|—d=0. j=l..r (410)

6|Df (') — Dya(p, X)) = N w'Dhi(xX)=0, j=1l..r,

iel(x/)

h()=0, (€ LX), j=l..r

Assumption (C) shows that £, 5. ¥, i/, w" is a solution of (4.10). Moreover
(cf. |9]), (C) implies that the Jacobian of (4.10) with respect to p, x’. u/, w"
in f, p. ¥, &/, w" is nonsingular. Therefore, the Implicit Function Theorem
may be applied in the same way as in the proof of Theorem 5.

To complete the analogy wih the local theory of first order, we define:

DEFINITION 6. p is said to be a locally strongly unique best approx-
imation of second order to f, if there exist a neighborhood /; = P of p and a
7 > 0 such that for every p € U;

la(p, ) —fll.>lla(p. ) =Fl. +71p—pl" (4.11)

THEOREM 7. Suppose that (C) holds. Then p is a locally strongly unique
best approximation of second order to f.
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Proof. In |9] it has been shown that (C) implies that for (€ F7,

¢l=1

I f—a(p+ & W =Il/—a(p. ), + max{td,D,a( p. &) ¢

o , .
t5 [515/020(17’ e~ Gt My, |} + e(r).

AR ¥

bserving that by (C) the matrix Y /4, is positive definite on

11D, a(p. F)E=0]j=1,..,rl (4.11) is easily established.
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